Suitability of Titanium for Implant Purposes
Almost 4000 tonnes of titanium devices of every description and function are implanted in patients worldwide every year. Requirements for joint replacement continue to grow as people live longer or damage themselves more through hard sports play or jogging, or are seriously injured in road traffic and other accidents. Light, strong and totally biocompatible, titanium is one of few materials that naturally match the requirements for implantation in the human body
Medical grade titanium alloys have a significantly higher strength to weight ratio than competing stainless steels. The range of available titanium alloys enables medical specialists designers to select materials and forms closely tailored to the needs of the application.

Titanium Performance in Medical Applications
"Fit and forget", is an essential requirement where equipment in critical applications, once installed, cannot readily be maintained or replaced. There is no more challenging use in this respect than implants in the human body. Here, the effectiveness and reliability of implants, and medical and surgical instruments and devices is an essential factor in saving lives and in the long term relief of suffering and pain. Implantation represents a potential assault on the chemical, physiological and mechanical structure of the human body. There is nothing comparable to a metallic implant in living tissue. Most metals in body fluids and tissue are found in stable organic complexes. Titanium is judged to be completely inert and immune to corrosion by all body fluids and tissue, and is thus wholly bio-compatible.

Bone and Joint Replacement
More than two millions patients worldwide are treated annually for total replacement of arthritic hips and knee joints. The prostheses come in many shapes and sizes. Hip joints normally have a metallic femoral stem and head which locates into an ultrahigh molecular weight low friction polyethylene socket, both secured in position with polymethyl methacrylate bone cement. Some designs, including cementless joints, use roughened bioactive surfaces (including hydroxyapatite) to stimulate osseointegration, limit resorption and thus increase the implant lifetime for younger recipients. Internal and external bone-fracture fixation provides a further major application for titanium as spinal fusion devices, pins, bone-plates, screws, intramedullary nails, and external fixators.

Dental Implants
A major change in restorative dental practice worldwide has been possible through the use of titanium implants. A titanium ‘root' is introduced into the jaw bone with time subsequently allowed for osseointegration. The superstructure of the tooth is then built onto the implant to give an effective replacement.

Maxillofacial and Craniofacial Treatments
Surgery to repair facial damage using the patients own tissue cannot always obtain the desired results. Artificial parts may be required to restore the ability to speak or eat as well as for cosmetic appearance, to replace facial features lost through damage or disease. Osseointegrated titanium implants meeting all the requirements of biocompatibility and strength have made possible unprecedented advances in surgery, for the successful treatment of patients with large defects and hitherto highly problematic conditions.

Cardiovascular Devices
Titanium is regularly used for pacemaker cases and defibrillators, as the carrier structure for replacement heart valves, and for intra-vascular stents.

External Prostheses
Titanium is suitable for both temporary and long term external fixations and devices as well as for orthotic callipers and artificial limbs, both of which use titanium extensively for its light weight, toughness and corrosion resistance.

Surgical Instruments
A wide range of surgical instruments are made in titanium. The metal's lightness is a positive aid to reducing any fatigue of the surgeon. Instruments are frequently anodised to provide a non reflecting surface, essential in microsurgical operations, for example in eye surgery. Titanium instruments withstand repeat sterilisation without compromise to edge or surface quality, corrosion resistance or strength. Titanium is non magnetic, and there is therefore no threat of damage to small and sensitive implanted electronic devices.

Heart Valves

Heart Valves